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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
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Final Report—Summer Visit 2010

During my visit to LLNL during the summer of 2010, I worked on algebraic multilevel
solvers for large sparse systems of linear equations arising from discretizations of partial
differential equations. The particular solver of interest is based on ILU decomposition. The
setup phase for this AMG solve is just the single ILU decomposition, and its corresponding
error matrix. Because the ILU uses a minimum degree or similar sparse matrix ordering,
most of the fill-in, and hence most of the error, is concentrated in the lower right corner of
the factored matrix.

All of the major multigrid components — the smoother, the coarse level correction ma-
trices, and the fine-to-coarse and coarse-to-fine rectangular transfer matrices, are defined in
terms of various blocks of the ILU factorization. Although such a strategy is not likely to be
optimal in terms of convergence properties, it has a relatively low setup cost, and therefore
is useful in situations where setup costs for more traditional AMG approaches cannot be
amortized over the solution of many linear systems using the same matrix. Such a situation
arises in adaptive methods, where often just one linear system is solved at each step of an
adaptive feedback loop, or in solving nonlinear equations by approximate Newton methods,
where the approximate Jacobian might change substantially from iteration to iteration.

In general terms, coarse levels are defined in terms of successively smaller lower right
blocks of the matrix, typically decreasing geometrically in order. The most difficult issue
was the coarse grid correction matrix. The preconditioner/smoother for a given level is just
the corresponding lower right blocks of the ILU factorization. The coarse level matrix itself
is just the Schur complement; this matrix is not known exactly using just the ILU decompo-
sition in the setup phase. Thus we approximate this matrix using various combinations of
the preconditioning matrix and the error matrix. During my visit, several approximations
of this type were implemented and tested. While some improved the convergence rate of
the overall method, these gains had to be balanced against the additional costs involved in
creating and applying these matrices. By this more stringent criterion, none of the improved
approximations could be characterized as an unqualified success.



